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The creeping motion of liquid drops through a 
circular tube of comparable diameter 
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The creeping motion through a circular tube of neutrally buoyant Newtonian 
drops which have an undeformed radius comparable to that of the tube was 
studied experimentally. Both a Newtonian and a viscoelastic suspending fluid 
were used in order to determine the influence ofviscoelasticity. The extra pressure 
drop owing to the presence of the suspended drops, the shape and velocity of the 
drops, and the streamlines of the flow are reported for various viscosity ratios, 
total flow rates and drop sizes. 

1. Introduction 
The experimental study reported in this paper is concerned with the creeping 

motion of neutrally buoyant drops of a Newtonian fluid through a straight 
circular tube when the diameters of the undeformed drops and the tube are of 
similar magnitude. Both Newtonian and viscoelastic suspending fluids have been 
considered in the present work. Much of the earliest interest in these problems 
arose because of the suggested analogy in the Newtonian case between the drop 
motion and the motion of erythrocytes in the capillaries. Although subsequent 
work on erythrocyte motion has now largely eliminated this motivation for 
investigation, the motion of a drop or train of drops through a tube of constant or 
variable cross-sectional area remains of considerable technological importance in 
its own right. One specific example where the case of a viscoelastic suspending 
fluid is of special significance is the motion of oil droplets in a porous matrix during 
tertiary (oil) recovery processes which use polymeric ‘pusher’ fluids, e.g. micelle 
or polymer flooding (see Savins 1969). 

I n  the present experiments, we have determined the change in the pressure 
drop APf which is required, in the presence of the suspended drops, to produce 
a given total volumetric flow rate Q ,  the drop shape, the velocity U of the drops 
relative to the average velocity 7 of the two-phase system as a whole, and finally, 
the streamline patterns with respect to a frame of reference in which the drops are 
stationary. The independent variables which were varied for both the Newtonian 
and viscoelastic suspending fluids are the total volumetric flow rate Q ,  the volume 
v of the suspended drops and the ratio r~ of the shear viscosity pi of the suspended 
fluid to that of the suspending fluid, po. For the case of a Newtonian system in 
the absence of fluid inertia effects, the appropriate characteristic pressure is 
simply po V/Ro, where Ro is the radius of the tube. The extra pressure drop AP+, 
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non-dimensionalized by ,uo V/Ro,  is then a function of (i) the relative size of the 
drop as measured by the ratio h of the undeformed drop radius to the tube 
radius, (ii) the relative viscosity u = ,ui/,uo and (iii) a deformation parameter 
r = po Fly, where y is the interfacial tension between the suspending fluid and 
the drop. When the suspending fluid is viscoelastic, additional parameters which 
measure the degree of elasticity are required. 

So far as we are aware, no previous investigation has considered the case of 
a viscoelastic suspending fluid. However there have been several experimental 
and theoretical studies of the creeping motion of both drops and solid particles 
through a circular tube when the suspending fluid is Newtonian. On the 
theoretical side, the investigations which are most relevant to the present work 
are those of Hetsroni, Haber & Wacholder (1970), Brenner (1971) and Hyman & 
Skalak (1972n, b) .  Hetsroni et al. (1970) used the method of reflexions to solve 
for the flow fields in and around a single undeformed drop suspended in a 
Poiseuille flow. Their result for the velocity of a neutrally buoyant concentrically 
located spherical drop, which is valid for small values of A, is 

P + o(~3). u p  = 2-- 
- 4u 

3 a + 2  

Since the drop was assumed spherical, the boundary condition on the normal 
component of the stress is not satisfied. However, upon substitution of the velocity 
fields for an undeformed drop, this boundary condition gives a first approxima- 
tion to the deformed shape of the drop. The result obtained by Hetsroni et nl. 
(1970) for the case of a neutrally buoyant concentrically located drop is 

r = r0 [I  + $L! ( 5  ~ 0 ~ 3 8  - 3 cos e)] + O(h3), (2) 

where 
10+ 11fJ rh2, 

L! = 10(1+u) 

which is valid provided that u = O( 1)  and I? -+ 0. Here ro is the radius of the 
undeformed drop, r is the radial variable measured relative to the centre of the 
drop and 8 is the polar angle measured counterclockwise from the axis of the 
undisturbed velocity vector. It should be noted that the deviation from a spheri- 
cal shape is predicted to increase linearly with r, and also to  increase slightly 
with an increase in the viscosity ratio u. Hetsroni et al. (1970) did not obtain 
results for the extra pressure drop caused by the presence of the drop. How- 
ever, shortly thereafter, Brenner (1971) obtained this quantity using the 
reciprocal theorem for low Reynolds number flow. The result for a neutrally 
buoyant concentrically located spherical drop is 

It is significant, as Brenner has pointed out, that APf may be either positive or 
negative (i.e. it  is predicted that the overall pressure drop can be either increased 
or decreased by the presence of the drop) depending on the magnitude of u. In 
addition, although (3) is strictly valid only for h < 1, the very small relative error 
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would appear to allow quite reasonable results for values of h as large as 

For higher values of A, Hyman & Skalak ( 1 9 7 2 ~ )  b )  studied the case of an 
equally spaced train of neutrally buoyant concentrically located drops including 
both deformed and undeformed shapes. Although exact solutions of the equa- 
tions of motion were derived, these were in the form of an infinite series of alge- 
braic equations. Hence, in order to obtain quantitative (numerical) results, it 
was necessary to truncate the series and restrict the parameters CT and l7 and 
particle spacing to specific values, while keeping h < 0.8. For h > 0.8, the number 
of algebraic equations required for convergence became excessive, even with the 
shape specified. Moreover the actual deformation from a spherical shape became 
so large for h > 0.8 that many trials would have been required to obtain the 
correct equilibrium shape of the drop. Comparison of the results of Hyman & 
Skalak (1972a) for the velocity of a single undeformed drop with (1)  indicates 
agreement to three significant figures for h < 0.4 but increasing deviation for 
larger values of A ,  presumably due to the neglect of higher-order terms in h in (1) .  
At h = 0.7, the velocities predicted by (1) exceed the values calculated by Hyman 
& Skalak (19724 by 3 yo. At h = 0.8, the difference is 6 yo. Likewise comparison 
of AP+ from Hyman & Skalak ( 1 9 7 2 ~ )  with that predicted by Brenner’s theory, 
(3)) shows that the latter increasingly underpredicts the former with increasing A. 
At h = 0.5 the difference is 5 yo. 

On the experimental side, Sutera & Hochmuth (1968) and Hochmuth & 
Sutera (1970) have investigated the case of solid hemispheres and caps in a New- 
tonian suspending fluid as a model for the motion of erythrocytes through capil- 
laries. I n  addition, Prothero & Burton (1961, 1962) have reported a more or less 
qualitative investigation of a train of gas bubbles in a Newtonian fluid as a model 
for blood flow through capillaries. However the only investigations of direct 
relevance to the present paper are those of Goldsmith & Mason (1963) and 
Bretherton (1961), who studied very large ( A 9  1) suspended drops in slow 
motion (I? < I)  where the drop and tube wall are separated by only a thin layer 
of suspending fluid. The variables measured in these studies were mainly the 
velocity of the fluid drop relative to the average fluid velocity, and the thickness 
of the thin layer of fluid separating bubble and wall. The chief result of qualitative 
interest here is the occurrence of an apparent asymptotic behaviour for large h in 
which the velocity of the drop and thickness of the thin layer of fluid become 
independent of A. No measurements of AP+ were made. 

The present investigation covers the range h N 1 for intermediate values of I?, 
and IT varying from approximately 0.2 to 2. Thus, for the Newtonian case, our 
results lie between the available theory ( A  5 0.8) and experiments ( A  9 1). Also, 
we provide an initial study of the additional effects associated with a viscoelastic 
suspending fluid. The range of h near unity is of considerable interest since it 
is here that the maximum variations in drop shape and wall effect on APf  may 
be expected. 

0.3-0.4. 
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FIGURE 1. Schematic diagram of experimental set-up (not to scale). (1) Constant-tempera- 
ture bat,li. ( 2 )  Micrometer syringe. (3) Bulk-fluid storage. (4) Test section. (5) Pressure 
hole. (6) Thermocouple probe. (7 )  Camera and moving mechanism. (8) By-pass valve. 
(9) Pressure transducer. (10) Transducer indicator and recorder. (1 1) Thermocouple reading. 
(12) Withdrawal and infusion pump. (13) Waste storage. (14) Storage reservoir. 

2. Apparatus and experimental techniques 
2.1. Experimental set-up 

The experimental set-up is shown schematically in figure 1. The test section, 
where all the data were obtained, consisted of a horizontal precision-bore glass 
tube 120 cm long of internal diameter (2RJ 1 cm. Two pressure taps were located 
50 cm apart, the tap further upstream being approximately 50 cm from the 
entrance to the 1 cm tube. These pressure taps were connected to  a manometer 
which was conventional except for a valve a t  the bottom which could be closed 
to allow the pressure difference between the bottoms of the two legs to be 
measured and recorded using a differential pressure transducer. The method of 
obtaining APi- with this set-up will be described later in this section. The 50 cm 
section of tube upstream of the first pressure tap and the 20 cm section down- 
stream of the second were intended to minimize end effects. At its upstream end, 
t’he test section was connected to a larger (1.4 cm diameter) glass tube into which 
the drops were manually injected using a precision micrometer syringe (accurate 
to within f 0.001 ml) connected to a 17 gauge hypodermic needle. The larger 
diameter tube was adopted in order to facilitate the injection of the larger drops 
( A  > 1) after it was found that the injection method inevitably brought the drops 
into contact with the wall of the smaller (1 cm) tube, where they became 
permaiiently affixed owing to  the wetting properties of the drop liquid. The 
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1 and 1.4cm glass tube were both enclosed in a long Plexiglas constant- 
temperature bath. 

The suspending fluid was pumped in at  a constant flow rate using a variable- 
speed Harvard Apparatus reciprocal-action infusion-withdrawal syringe pump. 
While one syringe was supplying the suspending fluid into the test section by 
injection, the other was being filled from a reservoir by withdrawal, thusallowing 
a continuous flow to  be maintained. A large storage section was connected to 
the exit of these syringes and placed inside the constant-temperature bath to 
ensure t,hat the suspending fluid was a t  the bath temperature (25.0 0.5 "C) 
before entering the test section. Two thermocouples, one at each pressure tap, 
were used to monitor the temperature of the suspending fluid in the test section. 
The drops were injected one by one with the pump completely turned off. After 
a given volume of the drop fluid had been injected, bulk fluid was pumped in 
slowly so that the drop detached itself from the hypodermic needle. The drops 
were found to migrate to the concentric position as long as they were neutrally 
buoyant, so that no special effort was made to inject them onto the centre-line 
of the tube.The tendency of small neutrally buoyant drops to move to the tube 
axis had been previously reported by Karnis & Mason (1967). When trains of 
several drops were considered, as was most often the case, the drops were injected 
such that t!iey were as evenly spaced as possible. However it was observed here, 
and also predicted by Hyman & Skalak (1972a, b ) ,  that interactions between 
drops wese negligible provided that the distance between their centres was only 
slightly larger than the tube diameter. As all our data were taken with the spacing 
a t  least this large, the precision of the equal spacing was not critical to the results. 

2.2. 2lfatwials 

For the Newt,onian case, the suspending fluid was 95.75 yo by weight glycerine in 
water. The percentage of glycerine was monitored during the experiments by 
using a hydrometer to measure the solution density a t  25.0 "C (1.251 g1c.c.). The 
viscosit8y was measured using a Canon-Fenske capillary viscometer and was 
consistenfly found to be within 2 yo of the published value of 417 CP at  25 "C. It is 
believed that the small (2 yo) discrepancies can be attributed to slight variations 
in the bath temperature for the viscometer, which could not be controlled more 
accurately than to within & 0.1 "C. It is well known that the viscosity of glycerine 
exhibits a rather strong dependence on temperature. For example, a 0.5"C 
change from 25OC produces a 5 %  change in the viscosity. Indeed, when an 
attempt was made to calibrate the experimental set-up of figure 1 by using the 
measured flow rate and pressure drop to determine the viscosity, it was found 
that only approximately 5 yo agreement with values in the literature could be 
obtained. This discrepancy presumably reflects the accuracy of temperature 
control, which was to within .t 0.5 "C in the test section. 

The viscoelastic suspending fluid was a 0.5% by weight solution of Dow 
Separan AP30 (an ionic polyacrylamide) in water. The viscosity and primary 
normal-stress difference for this material have been reported as a function of the 
shear rate by Leal, Skoog & Acrivos (1971). Other properties, such as relaxation 
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and retardation times or the elongational viscosity, which are required to 
characterize the material behaviour in a time-dependent non-viscometric flow 
are also available in the literature (Huppler, Ashare & Holmes 1967; Huppler, 
MacDonald, Ashare, Spriggs, Bird & Holmes 1967). However, since the present 
experiments encompass only a single polymer concentration, we shall not con- 
sider the various viscoelastic parameters further, with the exception of the shear 
viscosity pO, which can be compared directly with the Newtonian case. Since the 
viscosity of 0.5 % Separan is strongly shear-rate dependent and the flow through 
a tube (with or without drops) has a non-uniform shear rate, there is some arbi- 
trariness in the precise value of po to assign for a particular flow rate. However, in 
view of the fact that one of the major variables of interest is the additional 
pressure drop relative to that of the pure suspending fluid, we have used the 
apparent viscosity of the viscoelastic fluid a t  the wall shear rate of the pure 
suspending fluid which is appropriate for each volume flow rate. Thus, in order 
to obtain the apparent viscosity as a function of the volume flow rate, the 
pressure drop L across the 50 cm test section was measured for various flow rates 
Q .  For a unidirectional flow of any fluid, a simple force balance shows that the 
wall shear stress 7w is related to the pressure drop by 

7, = *R,(AP/L). (4) 

Furthermore it can be shown (see Coleman, Markovitz & No11 1966, p. 46) that 
the wall shear rate is given for any fluid by 

where n is the slope of rw us. 4QlnR: on a log-log plot. Although n may generally 
vary with the flow rate, we have found that n = 0.450 provides a good approxima- 
tion to the viscosity of 0.5 yo Separan in the range of shear rates characterizing 
the present experiments. Thus, for our present purposes, the relationship between 
the apparent viscosity, p0 ( = rW//3,) and /3, can be represented by a power-law 
model. Values of p0 for various flow rates are given in table 1, togetherwithother 
pertinent information on the conditions of our experiments. Values froin the 
literature obtainedin a simple shear viscometer are found to be slightly lower than 
those obtained by the present method, but the slope ofp, vs. ~9, is the same. 
Although no normal-stress measurements were made in the present st,udy, we 
have also listed values of the first normal-stress difference a t  each Pu, from the 
work of Leal et al. (1971) in table I .  

The suspended drops consisted of a well-mixed solution of silicone oil (Dow 
Corning 200 fluid, a dimethyl silioxane polymer) and carbon tetrachloride which 
behaves as a Newtonian fluid in the range of shear rates of the present experi- 
ments. The two liquids were mixed in such a proportion that the density matched 
that of the suspending fluid to within 0.001 g/c.c. For the viscoelastic system, 
a mixture of about 18 parts of silicone oil to one part of carbon tetrachloride 
yielded a density (1.000 g/c.c.) equal to that of the Separan AP 30lwater solution. 
For the Newtonian system, a mixture of about 12 parts of silicone oil to 10 parts 
of carbon tetrachloride gave a density (1.251 g1c.c.) equal to that of the 
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Quantities 
independent 
of flow rate 

Flow rate, V (cm/s) - 

Newtonian systems 
\\.'all shear rate, pw (s-1) 
Suspending-fluid viscosity, po (P) 
Bulk Reynolds number, ( p  VRo)/po 
Deformation parameter, r-' 
Viscosity ratio, u 

System 1 (pi  = 8.65 P) 
System 2 (pi = 3.97 P) 
System 3 (pi = 2.45 P) 
System 4 (pi = 0.80 P) 

Viscoelastic systems 
Wall shear rate, /&, (s-l) 
Suspending-fluid viscosity, po (P) 
Suspending-fluid first normal- 
stress difference, N ,  (dyne/cm2) 

Bulk Reynolds number, (pVR,) /p ,  
Deformation parameter, r-l 
Viscosity ratio, u 

System 5 (p, = 20.1 P) 
System 6 (pi = 6.9 P) 
System 7 (pi = 2.4 P) 
System 8 (pt = 0.69 P) 

- 
4.25 
- 
- 

2.04 
0.93 
0.58 
0.19 

Quantities dependent 
on flow rate 

r JL______. 

(a) 
0.390 

3.13 

0.05 
- 

13.3 

- 
- 
- 
- 

4.10 
6-54 

40.0 

0.03 
14.9 

3.1 
1.1 
0.37 
0.11 

TABLE 1. Conditions of experiments 

(b )  
0.525 

4.20 

0.06 
9.9 

- 

- 
- 
- 
- 

5.50 
5.46 

50.0 

0-05 
13.3 

3.7 
1-3 
0.44 
0.13 

( c )  

0.756 

6.05 

0.09 
6.8 

- 

- 
- 
- 
- 

7.93 
4.47 

70.0 

0.09 
11.2 

4.5 
1.5 
0.54 
0-15 

(4 
0.920 

7.36 

0.1 
5.6 

- 

- 
- 
- 
- 

9-65 
4.08 

80.0 

0.1 
10.1 

4.9 
1.7 
0.59 
0.17 

hydrolysed glycerine. Four grades of silicone oil having different viscosities but 
equal density were used for the Newtonian system and will be labelled systems 
1-4. Another four grades of silicone oil were used for the viscoelastic system and 
will be labelled systems 5-8. The viscosity of the mixture of silicone oil and 
carbon tetrachloride was measured by a Canon-Fenske capillary viscometer a t  
25.0 "C. An appropriate dimensionless parameter is the viscosity ratio u = pi/po.  
The viscosity of glycerine is constant while that of Separan in water is flow-rate 
dependent. Consequently u is also flow-rate dependent for the viscoelastic 
system. The viscosity pi of the mixture of silicone oil and carbon tetrachloride 
and the viscosity ratios for the eight systems are given in table 1 for the various 
flow rates used in the experiments. 

2.3.  Conditions of the experiments 

Both the experiments for the Newtonian and for the viscoelastic case were thus 
carried out for four different combinations of the suspending and drop fluids, 
corresponding to systems 1-8. In  addition, for each system of fluids, we used 
four different volume flow rates, and a t  each flow rate, six different volumes v 
for the suspended drops. The various flow rates are labelled (a)-(d), with (a )  
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2, (ml) 0.2 0.3 0.4 0.5 0.6 0.7 
h 0.72G 0.831 0.914 0.985 1.046 1.102 

TABLE 2 

corresponding to the lowest. They were chosen such that the bulk Reynolds 
number Re = pVRo/,uo is small in every case. The actual values of Re (the 
maximum being 0.1) are listed in table 1. The six different drop volumes v and 
corresponding h are given in table 2. 

At low Reynolds number, the parameter which characterizes the degree of 
drop deformation is the ratio I' = p,, r / y ,  which is a measure of the relative 
importance of the viscous stresses and the interfacial tension y. The interfacial 
tension, measured using a DuNoiiy platinum ring tensiometer, was found to 
be 22 dynelcm for an interface between the glycerine and the corresponding 
mixture of silicone oil and carbon tetrachloride, while €or an interface between 
the Separan solution and t'he appropriate mixture of silicone oil and carbon 
t,etrachloride it was found t o  be 38 dyne/cm. Although y was thus fixed by the 
choice of materials, the parameter I? was varied through the choice of various flow 
rates (and various values of po for the viscoelastic case). I n  fact, t,he primary 
reason for varying Q in the experiments was to study the effects of the flow 
rate on drop deformation. 

2.4. Methods of measurement 

Pressure measurements were made using a combination of a standard U-tube 
manometer, which was attached to  the pressure taps in the test section, and a 
differential variable-reluctance pressure transducer and indicator system nianu- 
factured by Validyne Engineering Corporation. I n  order to  minimize transients 
and other anomalies associated with the motion of the drops directly above the 
pressure taps, they were located 50 cni apart. This rather large separation was 
designed not only to allow the drop or train of drops to be completely contained 
between the two taps, but also to ensure adequate time in this 'enclosed' con- 
figuration for the measured pressure difference to  attain a steady value. The 
major difficulty associated with the wide separation of the pressure taps was that 
the overall pressure drop was quite large, considerably exceeding the extra 
pressure drop AP+, which was the main pressure variable of interest. In order 
to  achieve reasonable accuracy for the small change APf,  we used the combina- 
tion of a manometer and transducer mentioned above. The manometer was 
allowed to come to equilibrium with the suspending fluid alone moving through 
the test section a t  the desired flow rate Q,  and the valve at  the bottom of the 
manometer was then closed, which effectively separated the two legs. I n  this 
configuration, the pressure transducer, which had a full-scale range of & 1 in. of 
water a t  25 "C could be used to measure accurately the di8erences between the 
pressures a t  the two taps which arose because of the presence of the drops in the 
test section (i.e. measure AP+ directly). Carbon tetrachloride was chosen as the 
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manometer fluid because of its relatively low viscosity, which produces a response 
time for the transducer of less than 6 s. In  order to enhance the magnitude of the 
pressure signal, experiments were generally run with 10-24 drops in a train. The 
additional pressure drop AP+ for one drop was then obtained by dividing the total 
extra pressure drop by the total number of drops. It had previously been 
predicted by Hyman & Skalak (1972a, b )  for the Newtonian case that the 
pressure drop per drop should be independent of the spacing for separations of 
centres of a t  least one tube diameter. This was confirmed experimentally in the 
present study for both the Newtonian and viscoelastic cases. 

Photographs giving the drop shape and streamlines were taken by cameras 
which moved parallel to the direction of motion of the drops. Those obtained for 
determination of the drop shape were taken using a 35mm single-lens reflex 
camera with diffused background lighting and ASA 400 Tri-X film (Kodak). The 
streamline pictures were taken using a Graflex camera fitted for high-speed 
Polaroid Type 57 (3000 ASA) film. A 300 W projector lamp was allowed to  shine 
through a slit 0.01 in. wide in a completely dark room.The slit was aligned length- 
wise, parallel to the tube, so that the cross-sectional plane through the centre of 
the tube was illuminated for the pictures, which were taken in a horizontal direc- 
tion. The motion of the fluid was traced by very small suspended particles, which 
appear as streaks in the pictures for exposure times of approximately 3 s. Since 
the object (the suspended drop) was enclosed by a curved surface (the circular 
tube), we found that it was necessary to match the refractive indices of the 
suspending fluid and the fluid in the constant-temperature bath in order to  
minimize photographic distortions of the drop shape. The matching was con- 
sidered adequate when the radii in different directions measured from a photo- 
graph of a spherical drop were found to differ by less than 1.5 yo, Water was used 
in the bath when the suspending fluid was Separan in water. Aqueous sugar solu- 
tion, 60 yo by weight, having a refractive index of 1.44, was used in the bath when 
the suspending fluid was glycerine (refractive index 1.46). 

3. Experimental results 
I n  the present study we have measured A p t ,  U and the drop shape for each of 

the eight different fluid systems listed in table 1 a t  four different flow rates and 
with six drop sizes in the range 0.7 5 h 5 1-1. The results are presented and 
discussed in the following four subsections. Although the discussion is primarily 
focused on the Newtonian case, comparison is also made, where appropriat,e, 
between the Newtonian and viscoelastic systems. In  order to facilitate this com- 
parison, the values of the drop viscosity were chosen to  provide similar values of 

for systems 1 and 5, 2 and 6, 3 and 7, and 4 and 8. In  addition, the values of r 
for the viscoelastic system with volume flow rates (b )  and (d )  are very nearly the 
same as the values for flow rates (a) and ( b ) ,  respectively, in the Newtonian 
system. The only experimental runs which are directly comparable with any of 
the available theoretical analyses are those for systems 2 ( b )  and (d),  which have 
almost the same values of r-1(10 and 4) and cr (1.0) as were assumedin the analysis 
of Hyman & Skalak (1972 b ) .  

24 F L Z I  71 
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3.1. Drop shape 

Photographs depicting the drop shape were taken for all the fluid systems, flow 
rates and drop volumes. For purposes of the present discussion, we reproduce 
thoseforsystems l(a), I ( b ) , 4 ( ~ ) , 4 ( b ) , 5 ( b ) , 5 ( d ) ,  S(b)andS(d)infigure2(plate 1) .  
The remainder may be found in Ho (1975). The shapes differ with variations in 
the flow rate 8, the viscosity ratio u and the drop size as measured by A. 

Let us first consider the variations in shape as h is changed, holding 7 and u 
constant. Obviously, in all cases, the length of the drop (i.e. the maximum dimen- 
sion measured in the direction of the tube axis) increases with h since the volume 
of the drop is increased and the streamwise extent is unconstrained. As h increases, 
the maximum width (measured in the radial direction from the tube axis) first 
increases, but then, constrained by the wall, tends to become constant for h 2 1.  
That is, the width of the layer of suspending fluid between the wall and the drop 
is essentially independent of the drop volume for A 2 1-0. We shall see, in a later 
section, that the drop velocity also becomes independent of the drop volume 
as h is increased above 0.9. Both of these features were also observed by 
Goldsmith & Mason (1963) in their investigation of the motion of very large 
bubbles. 

Next we consider variations in shape caused by increasing the flow rate 7. 
It is evident from figure 2 that drops of the same volume and Same u, in both 
Newtonian and viscoelastic suspending fluids, become more elongated (in the 
direction of motion) as 7 increases. This increase in deformation with increased 
velocity is both intuitively obvious and in qualitative agreement with the 
theoretical predictions of Hetsroni et al. (1970) and Hyman & Skalak (1972b). 

Finally, we turn to the dependence of the drop shape on the viscosity ratio u. 
For the Newtonian system, as u is increased with h and 7 held constant, the 
drops become more elongated, i.e. more viscous drops suffer a larger deformation. 
Although opposite to the intuitive notion that a more viscous drop should be 
less easily deformed, this result is in agreement with the perturbation theories of 
Hetsroni et al. (1970) [cf. equation (2)] and of Hyman & Skalak (1972b). It should 
be noted however that both the theories and the present experiments are relevant 
only for viscosity ratios u of order unity, and one cannot, therefore, extrapolate 
to the obvious contradiction that a rigid sphere (u-fm) is more deformable than 
a gas bubble ( a - t O ) .  Also, the shape change associated with a change in the 
viscosity ratio by a factor of ten is comparable in magnitude to that induced by 
a change in the velocity 7 of only 30 %. This more pronounced influence of r on 
the shape, compared with u, is again substantiated qualitatively by equation (2) 
(from Hetsroni et al. 1970). For the viscoelastic case, it is also clear from figure 2 
that the more viscous drops are more elongated for given values of B and A. 
However, unlike the Newtonian case, where the general drop shape is qualita- 
tively similar for all values of u, the drops in the viscoelastic fluid not only 
become more elongated with increasing cr, but also become increasingly pointed 
at  the front and flattened a t  the back compared with drops for smaller u, which 
have maximum girth somewhere near the middle (see figure 2). 

It is also interesting to compare drops of the same u and I' for the Newtonian 
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and viscoelastic systems. As shown in figure 2, for the case of high a, on com- 
paring system 1 (a )  (a = 2.04, r-1 = 13.3) with system 5 ( b )  (a = 3.7, r-1 = 13.3) 
and system 1 ( b )  (a = 2.04, r-l = 9.9) with system 5 ( d )  (a = 4.9, J?-l = 10.1), it  
may be seen that the drops in the viscoelastic systems appear to be more ‘stream- 
lined’ than those in the Newtonian systems. On the other hand, for the case of 
small a, on comparing system 4(a )  (a = 0.19, = 13.3) with system 8(6)  
(a = 0.13, = 9.9) with system 8 ( d )  
(a = 0-17, I’-l = 10.1)) it is apparent that the drops in the viscoelastic systems 
bulge and appear to be less ‘streamlined’ in shape compared with those in the 
Newtonian systems. It is also significant that for all u the layers of suspending 
fluid between the drops and wall are thicker in the viscoelastic systems than in 
the corresponding Newtonian cases. 

= 13.3) and system 4 ( b )  (a = 0-19, 

3.2. Streamlines 
In  order to obtain a more detailed view of the dynamics of drop motion in tubes, 
a series of flow-visualization studies was made, based upon streamline pictures 
taken in the manner described in fj 2. The camera was mounted on a platform 
which moved horizontally a t  precisely the same speed as the drops, which thus 
appear motionless in the pictures. Both Newtonian and viscoelastic suspending 
fluids were used. However, except for obvious variations resulting from the 
differences in drop shape, no qualitative differences could be detected between 
these two cases (see figure 3, plate 2). I n  both, the fluid inside the drop recirculates 
with no net motion since the photographs were taken from a frame of reference 
which moved with the drop velocity. The motion of the suspending fluid has 
two distinct regimes. A central core of recirculating fluid is found between 
adjacent drops and centred about the tube axis with a radius approximately 
the same as the deformed drop radius. Since the entire central core recirculates, 
there is no net motion of this core of suspending fluid. That is, the average 
velocity inside this ‘bolus’ is the same as the drop velocity U .  For this reason, 
the stagnation points in this core are located a t  about the same radial distance 
from the axis as the stagnation points inside the drop. Since U / v  > 1, fluid in the 
second regime, which occupies a shell between the core and the tube wall, flows 
backwards relative to the drops. These qualitative features are similar to the 
observations of Goldsmith & Mason (1963) and Prothero & Burton (1961). The 
work of Prothero & Burton (1961) was intended to show that the bolus flow helps 
to increase the mass transfer from the bulk fluid to the walls. Taylor (1960), who 
also reported a study of the motion of large bubbles in tubes, predicted the 
existence of a stagnation ring and stagnation vortex on the leading end of a 
bubble. This seems to be in agreement with our pictures since no motion of tracer 
particles is discernible in this region. Finally, a ‘ recirculating ’ core of suspending 
fluid is also found upstream and downstream of the leading and trailing drops of 
any train, including the case of a single drop. 

3.3. Drop velocity 

We now turn to the measured values of the drop velocity relative to the average 
overall fluid velocity of the system. Measurements were made for all combinations 

24-2 
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v(1nl) ... 0.2 

1-46 
1.4G 
1.46 
1.47 

1.40 
1.51 
1.52 
1.53 

1.51 
1.52 
1.54 
1.58 

1.56 
1.57 
1.59 
1.65 

1.37 
1.38 
1.41 
1.47 

1.37 
1.38 
1.42 
1.47 

1.38 
1.38 
1.44 
1.49 

1.40 
1.42 
1.47 
1.51 

0.3 

1.35 
1.35 
1.35 
1.39 

1.36 
1.38 
1.39 
1.45 

1.37 
1.41 
1.42 
1-49 

1.47 
1.48 
1.50 
1.55 

1.31 
1-35 
1.35 
1.39 

1.31 
1.36 
1.38 
1.39 

1.31 
1.36 
1.38 
1.39 

1.33 
1.38 
1.41 
1.43 

0.4 

1.27 
1.30 
1.32 
1.39 

1.28 
1.33 
1.36 
1.45 

1.29 
1.35 
1.39 
1.49 

1.39 
1.41 
1.48 
1.55 

1.26 
1-29 
1.32 
1.36 

1.26 
1.29 
1.32 
1.36 

1.28 
1.31 
1.36 
1.39 

1.32 
1.34 
1-41 
1.43 

0.5 

1.27 
1.30 
1.32 
1.39 

1.28 
1.33 
1.36 
1.45 

1.29 
1.35 
1.39 
1.49 

1.39 
1.41 
1.48 
1.55 

1.26 
1-29 
1.32 
1.36 

1.26 
1.20 
1.32 
1.36 

1-28 
1.31 
1.3G 
1-39 

1.32 
1-34 
1.41 
1.43 

TABLE 3. Relative velocity of drops U / v  

0.6 

1.27 
1.30 
1.32 
1.39 

1-28 
1-33 
1.36 
1.45 

1.29 
1-35 
1.39 
1.49 

1.39 
1.41 
1.48 
1.55 

1.26 
1.29 
1.32 
1.36 

1-26 
1.29 
1.32 
1.36 

1.28 
1.31 
1.36 
1-39 

1.32 
1.34 
1-41 
1.43 

0.7 

1.27 
1.30 
1.32 
1.39 

1.28 
1.33 
1.36 
1.45 

1.29 
1.35 
1.39 
1.49 

1.39 
1.41 
1.48 
1.55 

1.26 
1-29 
1.33 
1.36 

1.26 
1.29 
1.32 
1.36 

1-28 
1.31 
1.36 
1-39 

1.32 
1.34 
1.41 
1.43 

of t'he viscosity ratio, drop size and volume flow rate in both the Newtonian and 
viscoelastic systems. The complete set of results is given in table 3. As expected 
[cf. equation (I)], the drop velocity exceeds in every case, generally being 
30-GO yo faster. It is useful to consider the variations in U / P  with respect to V ,  
h and cr more closely. 

and cr fixed. I n  both the 
viscoelastic and Newtonian systems, the increasing wall effect causes the drop 
velocity to decrease with increasing h until h 2 0.9, when the velocity becomes 
practically independent of A. As we have noted previously, the latter observation 
is in agreement with the results of Goldsmith & Mason (1963), and is presuniably 
a result of the independence of the drop cross-section of h which was noted in 
3 3.1. I n  order t o  compare the present experimental results with the available 

We begin with the variation in U with A, holding 
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FIGURE 4 ( a ) .  For legend see next page. 

theory, we have plotted the quantity U / v  - 2 in figure 4 (a )  as a function of h for 
the four Newtonian systems a t  the lowest flow rate (a ) ,  where deformation is 
least important. Also shown are the theoretical predictions from (1) (from 
Hetsroni el al. 1970) a t  the same viscosity ratios, and the numerical results of 
Hymaii 8: Slralak (1972a) for (T = 1 and no shape deformation. Equation (i), 
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h 

FIGURE 4. Relative velocity of drops U l 7 - 2  ws. drop size. ( a )  4, system 1 ( a ) ;  a, system 
2 ( a ) ;  v,  system 3 ( a ) ;  ., system 4(a ) ;  0, results of Hyman & Slralak ( 1 9 7 2 ~ )  for un- 
deformed drops and u = 1 ;  - , equation (1) (Hetsroni et al. 1970) for (T = 2.04, 0.93, 
0.58 and 0.19. ( b )  0 ,  system 2 ( a ) ;  4,  system 2 ( b ) ;  A, system 2(c ) ;  b,  system 2 ( d ) ;  
a ,  D , results of Hyman & Skalak (1972b) for deformed drops, u = 1 and I?-1 = 10 and 4 
respectively. 

which is strictly valid only for h < 1, predicts too high values for r'/v at the 
inoclerate values of h which characterize the experiments. On the other hand, 
the agreement with the results of Hyman & Skalak (1972a) is quite good. 
Comparing results for the Newtonian and viscoelastic systems, it may be noted 
that the rate of decrease of U/V with increasing h is more rapid for the 
Newtonian case. As a consequence, for comparable values of u and I?, drops move 
faster in the Newtonian system than in the viscoelastic system for h 5 O.S, but 
slower for h 2 0.9. 

increases with increasing average fluid velocity 
for both the Newtonian and viscoelastic cases. That is, more rapid relative drop 
motion is associated with larger deformation. This trend is in qualitative agree- 
ment with the available theoretical results of Hyman & Skalak (1972b) as may 
he seen from figure 4 ( b ) ,  where we have plotted U / r  - 2 us. h for the Newtonian 
system 2 (a = 0.93) for all four flow rates (a)-(a!), together with Hyman & 
Sltalak's (1972b) calculated values for a = 1, r-l = 4 and 10, and h = 0.3 and 0.7. 

The relative drop velocity U /  
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I I I I I I I I I 
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

h 

FIGURE 5. Dimensionless extra pressure drop AP+R,/p,Y ws. h for systems 1 (a)-(d), 
3(a)-(d) and 4(a) - (d) ;  ---, equation (3) (Rrenner 1971) for d = 2.04, 0.58 and 0.19; 
- - - -, estimation of extra pressure drop by assuming that an increase in h is equivalent 
to an increase in an annular core starting from h = 0.985. 
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FIGURE 6. Dimensionless extra pressure drop AP+R,/p, 2's. 
h for systems 5 (a)-(d),  7 (a)-(d)  and 8 (a)-(d) .  
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h 

FIGURE 7. AP+R,/po va. h for systems 2 (a)-@) and 6 ( a ) - ( d ) .  - - -, equation (3 )  for 
(T = 0.93. Results of Hyman 8: Skalak (1972a, b )  for (r = 1:  0, undeforined drops; 
Q, r-l = 10, deformed drops; D, r-l = 4, deformed drops. 

Finally, we turn to the variation in U / v  with u, holding h and constant. The 
experimental results in both the Newtonian and viscoelastic systems show that 
U /  V increases as CT decreases. Unlike the particle deformation, however, for 
which variations in (r are relatively unimportant compared with variations 
in 7, the effect of r~ on U / v  is comparable to that of 7. As is obvious from 
figure 4 (a), theory and experiment are in qualitative agreement with regard 
to the dependence of U / v  on (r. 
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3.4. Extra pressure drop AP+ 
The quantity of most interest from the technological point of view is the change 
AP+ in the pressure drop owing to the presence of suspendeddrops, relative to that 
which would occur a t  the same volume flow rate with the suspending fluid alone. 
The various experimental results are summarized in figure 5 (Newtonian systems 
1,3  and 4), figure 6 (viscoelastic systems 5 , 7  and 8) and figure 7 (systems 2 and (i), 
where we have plotted the dimensionless quantity AP+Ro/,uo 7 as a function of h 
for various combinations of u and the flow rate. Shown along with the Newtonian 
results are calculated values of AP+Ro/,uo taken from the small-h theory for 
undeformed drops of Brenner (1971) [see (3)]. Before discussing these results in 
detail, it is useful to summarize the various physical phenomena which can affect 
the magnitude and sign of the extra pressure drop. 

These separate logically into three distinct mechanisms: the simple exchange 
of suspending fluid with drop fluid of different viscosity, which in principle would 
be active even if the flow field were unchanged; the alteration of the flow field 
clue to the presence of the drop interface; and the alteration of the drop shape, 
leading to changes in the flow. Brenner’s (1971) analysis of an undeformed drop 
demonstrates the nature of the interaction of the first two mechanisms for a 
moderately small drop ( A  < 1). I n  particular, even when u = 1, so that the first 
mechanism is not active, Brenner’s solution shows that the extra dissipation 
associated with modification of the flow field still gives AP+ > 0. Only when 
u is decreased to approximately 0.48 does the replacement of more viscous with 
less viscous fluid overtake the effect of altered flow to give AP+ = 0. The effect 
of drop deformation for these moderate values of h is to decrease AP+ from its 
value for the undeformed state. Thus any of the features producing larger 
deformation (see 3 3.1) will produce also a tendency towards lower AP+. It should 
be noted that, in many instances, the various effects will be competing, so that 
AP+ may either increase or decrease depending on the relative importance of 
each. For example, an increase in 7 with u and h constant was previously seen to 
give increased deformation and thus by the present argument gives a decrease in 
AP+. However, an increase in u with 7 and h fixed also increases the deformation, 
but a t  the same time increases the average ,u in the system and causes some 
alteration in the flow fields in and around the drop. I n  view of the weak dependence 
of the shape on u, it should be expected that the latter effects will dominate, thus 
producing increased values of A P f .  Finally, it should be noted that, as h in- 
creases, the increased wall effect will tend to cause AP+ to increase as h6 for 
small h [see (3)]. However, as h is increased near unity, the drop shape is con- 
strained by the presence of the walls, and in fact we have seen that the main effect 
of increasing volume is to  increase the length of the drop with other geometric 
features remaining reasonably unchanged. Indeed, for h > 1, it might be expected 
t,hat the differential change in AP+ with h is approximately that associated with 
an increase in length of an annular flow region for two fluids of different viscosity. 
This suggests, therefore, that for large h the main effect on AP+ is equivalent to  
simple replacement of one fluid with another of different viscosity. Furthermore, it 
can be anticipated that in this simplified regime AP+ will increase with increasing 
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r 
FIGURE 8. AP+Ro/po V8. I' (=  p o v / y )  for system 1. 0, h = 0.726; a, h = 0.831; 

0, h = 0.914; A, h = 0.985; Q , h  = 1.046; V ,  h = 1.102. 

h for u > 1 and decrease with increasing h for CT < 1. Thus for intermediate h we 
may anticipate a transition in the value of u corresponding to APf = 0 from 

Let us now consider the detailed experimental results in the light of these 
qualitative physical ideas. 

Newtonian JEuid systems. The most straightforward variations are those for 
different values of u, holding the flow rate and drop size h fixed. The general trend 
is consistent with theoretical expectations: for the two largest values of g, an 
added pressure drop is always positive, while for the smallest value (a = 0.19) 
it is always negative. The intermediate value (u = 0.58) corresponds to both 
positive and negative values depending on the flow rate and on A. These results 
may be compared qualitatively with the theoretical prediction of Brenner (1971) 
that AP+ = 0 for u 21 0.48, assuming small h and no deformation. Although the 
experimental results are complicated by the effects of particle deformability and 
varying degrees of wall effect for the larger values of A, it is nevertheless clear 
from this comparison that the main effect of varying u is, as anticipated in the 
introduction to this section, simply the replacement of fluid with drop fluid of 
different viscosity, whichof course also affects the flow field. The third mechanism, 
resulting from increased deformation with increasing u, would actually tend to 
cause a decrease in AP+ for a more viscous drop. However, it is obvious from 
the experimental results that this change in deformation is so small that its 
effect on AP+ is very much dominated by the first two mechanisms. 

N 0.48 to 1. 
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Like the dependence on cr, the dependence of AP+ on the flow rate is relatively 
straightforward. Indeed, for fixed cr and A, APfRo/,uo 7 decreases with increasing 
flow rate in every case. That is, the behaviour of the pressure drop is similar to 
that in a shear-thinning fluid. This is perhaps more clearly illustrated in figure 8, 
where we have plotted AP+Ro/,uov as a function of the flow-rate parameter 
I? = ,uo Fly for v = 2.04 and various values of A. As we have suggestedin the intro- 
duction to this section, the dependence of AP+ on the flow rate (or I?) is primarily 
a reflexion of the dependence of the drop shape on I?. It is evident from figure 8, 
which is typical of all four Newtonian fluid systems, that the dependence of the 
additional pressure drop on 7 (or I?) is not very significant for small drop volumes 
(low values of A ) ,  but that the variation in AP+ with the flow rate becomes very 
prominent for larger values of h (larger drops). This behaviour is consistent with 
the observationswhichwe have reported of the drop shape. Thus for smallvolumes, 
especially v = 0.2ml ( A  = 0*726), the shape is not significantly altered as the 
flow rate is changed, while for larger volumes, the change in shape with flow 
rate is much more prominent. 

Compared with the influences of cr and I? on AP+, its dependence on the drop 
size h is more complicated. This is because changes in the drop size are associated 
with several competing mechanisms for variation in AP+. Assuming that the 
drops are either spherical or only slightly deformed, the two main effects of 
increasing h are due to the increased volume of the suspended drop and the 
increased wall effect (effectively, the decrease in the cross-sectional area of the 
channel which is available for the suspending fluid). This is indeed the case for 
values of h N 0.7, for which our results are seen to behave similarly to the pre- 
dictions of Brenner (1971), who included only these two mechanisms. The experi- 
mental results for system 2 are plotted in figure 6, together with the correspond- 
ing theoretical results of Brenner (1971) and the results of Hyman & Skalak 
( 1 9 7 2 ~ ~ ~  b )  for an undeformed drop with cr = 1.0 and h 2 0.8 and deformable drops 
with g = 1.0, I7-l = 4 and I0 and h = 0.5 and 0.7. Given the slight differences in 
CT and r between the experiments and the Hyman-Skalak theory, the comparison 
is quite satisfactory. 

As h increases towards order unity, the drops are increasingly deformed from 
the spherical shape, and for cases with AP+ > 0, the rate of increase of AP+ with h 
is decreased. Similarly, for the case AP+ < 0, AP+ decreases more rapidly. This is 
the ‘transition region ’ in our experiments, where the rate of change of AP+ with h 
begins to deviate from the behaviour predicted by (3). 

The behaviour for h > 1 requires more careful consideration. Although the 
drops are more deformed from a spherical shape for larger values of A ,  the main 
change, as we have noted earlier, is an increase in length. Specifically, the changes 
in geometry a t  the front and back of the drop are relatively small and it is mainly 
the region of ‘constant’ cross-sectional area which is increased. Thus the change 
in the detailed flow structure with increasing h for h 2 1 is almost totally confined 
to an increase in the length of the ‘annular’ flow region a t  the middle of the drop. 
For a true annular flow of two immiscible fluids, the pressure drop is increased 
with increasing h for cr > I and decreased for cr < 1. We suggest that the measured 
increments of AP+ with increasing h for h 2 1 can be interpreted essentially as 
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being due to an increase in length of an (admittedly complicated) 'annular' 
region. This would imply, as suggested in the introduction of this section, that 
A P +  should increase with increasing h for h 2 1 and u > 1, but decrease for a < 1. 
This qualitative idea is in complete agreement with the experimental results for 
h 2 1. Thus for system 2 (u < 1) the extra pressure drop increases with h for 
h 5 1, but does decrease for h 2 1 as expected. Similarly for system 3 ((T = 0.58) 
the extra pressure drop, which is initially positive and increasing for h 5 1 ,  
reaches a maximum a t  h = 1, and then decreases to negative values for h 2 I .  
The same argument can be applied to systems 1 and 4 t o  explain the behaviour of 
APf  for h 2 1. In  particular, we have found that APf  increases at  a decreasing 
rate for system 1 but a t  an increasing rate for system 4 in the region h 2 1. 
Surprisingly, it  appears that we can actually estimate the increase (or decrease) 
in the extra pressure drop for a change in h by assuming that the increase in A P f  
is due solely to an increase in the length of an annular core of the suspended fluid. 
This increase (for a > 1 )  or decrease (a < 1 )  in the additional pressure drop 
can be shown t'o be 

where AL is the increase in the length of the drop and /3 is the radial distance of the 
interface from the tube axis. Both quantities are non-dimensionalized by the 
tube radius R,. An example is given for system 4 (see figure 5),  where this effect on 
4P+ is assumed t o  hold starting from h = 0.985 and values of AL and p are 
obtained from the drop-shape photographs. 

Viscoelastic JEuid systems. Let us now consider the contribution of visco- 
elasticity to the extra pressure drop. Qualitatively, a comparison of the results 
for systems 5-8 in figures 5 and 7 with those for systems 1-4 in figures 6 and 7 
shows surprisingly little difference when APf is non-dimensionalized with respect 
to the characteristic wall-shear viscosity for simple tube flow of the viscoelastic 
fluid at  the same flow rate. Indeed, nearly all of the detailed discussion above for 
systems 1-4 may be carried over to the viscoelastic case. The only major exception 
is the magnitude of AP+Ro/,uo v, which appears to be somewhat lower than for the 
Newtonian problem a t  larger u, but somewhat larger (less negative) in the case 
of low u. 

This last point is illustrated in figure 9, where we have compared results for 
equal values of the deformation (flow-rate) parameter (13.3) and approxi- 
mately equal pairs of u values for corresponding Newtonian and viscoelastic case. 
The extra pressure drop is considerably lower for u = 3.7 in the viscoelastic fluid 
t,han for (T = 2.04 in the Newtonian fluid. Similar behaviour is observed for a E 1, 
although the difference is less pronounced. Finally, for a N 0.15, the situation is 
reversed, i.e. the viscoelastic fluid actually has a larger value of APfRo/pov 
than the Newtonian fluid. At present, we can give no firm explanation for this 
phenomenon. We simply recall that a substantial transition in the qualitative 
shape was also observed for the viscoelastic fluid (compared with the Newtonian 
case) as u was varied, and it seems likely that the two features are connected. 
However, any simple-minded argument based on the shape of the drops without 
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38 1 

consideration of the actual flow field and of other properties of the viscoelast'ic 
fluid (e.g. shear thinning, normal stresses or extensional viscosity) would be 
fortuitous. and of little fundamental value. 

4. Conclusion 
We have presented results for the additional pressure drop, the drop velocity, 

the drop shape and the streamlines for a train of neutrally buoyant drops sus- 
pended concentrically in a cylindrical tube. Reasonable agreement was found on 
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comparing available theoretical and experimental reports in the literature with 
our present work on the limiting behaviour of the drop shape, U / v  and A P f  a t  
high and low values of h and at certain intermediate values. Also, we were able 
to explain qualitatively the results for intermediate values of A. This study also 
points out the differences observed between the cases of a viscoelastic and a 
Newtonian suspending fluid. I n  particular, the use of a viscoelastic fluid caused 
a substantial transition in the shape of the drops (compared with the Newtonian 
case) as the viscosity of the suspended drop was varied, and caused AP+R,,/,uo to 
be reduced for high values of u (2 0.58) but increased for low values of u com- 
pared with the Newtonian case. It may be noted, however, that in comparing t'he 
viscoelastic and Newtonian systems the former was characterized only by an 
apparent viscosity a t  the wall shear ratme which is relevant for simple tube flow 
of the pure suspending fluid. A systematic variation of the viscoelastic propert,ies 
(and also purely viscous properties, e.g. shear thinning) was not abtempted and 
probably such an attempt is necessary before any qualitative explanation on the 
role of viscoelasticity can be achieved. Nevertheless the present study should be 
helpful in understanding two-phase flow in porous media, transport of two- 
phase fluids in tubes and t'he macroscopic modelling of blood flow in 
capillaries, and moreover, induce further study in this area of research. 

This work was supported, in part, by NSF Grant ENG 74-17590, and, in 
part, by Grant 6489-AC7 from the Petroleum Research Fund, administered 
by t8he American Chemical Society. 
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FIGURE 2. Drop shapes for systems 1 (a), 1 ( b ) ,  4 (a) .  4 ( b ) ,  5 ( h ) ,  5 ( d ) ,  8 ( b )  and 8 ( d ) .  

( F a c i n g  p .  384) 
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1 ( t l )  6 ( h )  

FIGURE 3. Streamlines for system l ( b ) ,  a single drop and the leadiiig drop uf a t r t t i i ~ :  

system 2 ( d ) ,  a train of drops; system G ( b ) ,  a train of drops; a i d  system 7 ( h ) .  a siiiglc drop 
and a train of drops. 
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